Proliferation and Differentiation Potential of Adipose-Derived Stem Cells Isolated from Dystrophin and Utrophin Knockout Mice

نویسنده

  • Burhan Gharaibeh
چکیده

INTRODUCTION: Adipose tissue serves as a viable source of stem cells due to its relative ease of collection and availability in patients. We have previously isolated adipose derived stem cells (ADSCs) from subcutaneous fat from C57BL mice and demonstrate their regeneration potential for musculoskeletal tissue (1). ADSCs hold potential in cell therapy for a variety of musculoskeletal injuries and diseases including Duchenne Muscular Dystrophy (DMD). DMD is a progressive muscle disease where the muscle wasting is often replaced by fat and connective tissue also known as pseudohypertrophy (2). Various animal models have been used for DMD but the utrophin/dystrophin double knockout mice (dKO) emulates the phenotype seen in DMD patients and has been widely used to develop a therapies for DMD. Since we have shown that muscle derived stem cells (MDSCs) are defective in proliferation and fusion, which correlate with the muscle histopathology, the goal of this paper was to determine any potential defect in ADSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue

Objective(s) Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored. Materials and Methods Adherent cells were isolated from the collagenase digests of adipose tiss...

متن کامل

Induction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System

Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...

متن کامل

From a Chemical Matrix to Biologically/Biomechanically-Defined Matrices-Optimizing/Correlating Growth Rate and Differentiation Potential of Human Adipose-Derived Mesenchymal Stem Cells

Use of Adipose Stem Cells (ADSCs), obtained easily in a relatively less invasive manner (abdominoplasty) and characterized by flow cytometry, is a classical approach in stem cell research and clinical aspects. Other techniques such as isolation of the cells from bone marrow aspirates  (1) are rather more invasive. Further, it is pertinent to point out that growth rate, differentiatio...

متن کامل

Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro

Objective(s):Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction med...

متن کامل

Growth Kinetics and in Vitro Aging of Mesenchymal Stem Cells Isolated From Rat Adipose Versus Bone Marrow Tissues

Objective- To investigate and compare growth potential as well as aging of mesenchymal stem cells (MSCs) derived from rat bone marrow tissue and adipose tissue (AT) occurred at epicardial and epididymal regions. Design- Experimental study.   Animals- 10 Wistar Rats.   Procedures- Rat MSCs occurred at bone marrow and epicardial and epididymal AT were isolated and culture expanded through sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011